
Optimal Limited Contingency Planning

Nicolas Meuleau
�

and David E. Smith
NASA Ames Research Center

Mail Stop 269-3
Moffet Field, CA 94035-1000�

nmeuleau, de2smith � @email.arc.nasa.gov

Abstract

For a given problem, the optimal Markov policy
over a finite horizon is a conditional plan contain-
ing a potentially large number of branches. How-
ever, there are applications where it is desirable
to strictly limit the number of decision points and
branches in a plan. This raises the question of
how one goes about finding optimal plans con-
taining only a limited number of branches. In
this paper, we present an any-time algorithm for
optimal � -contingency planning. It is the first op-
timal algorithm for limited contingency planning
that is not an explicit enumeration of possible
contingent plans. By modelling the problem as
a partially observable Markov decision process,
it implements the Bellman optimality principle
and prunes the solution space. We present ex-
perimental results of applying this algorithm to
some simple test cases.

1 INTRODUCTION

Markov decision processes (MDPs) provide a powerful the-
oretical framework for planning under uncertainty with
probabilities, costs and rewards [15]. In this framework,
the optimal solution to a problem is an optimal policy, that
is, a rule specifying the action to perform for each situa-
tion we could possibly be in. For a finite planning horizon,
this policy represents a conditional or contingent plan with
a branch for each possible situation that might be encoun-
tered during execution. Therefore, the optimal contingent
plan may be large and complex, since it may contain a large
number of branches.

There are applications where this size and complexity is a
significant drawback. Consider, for example, the problem
of constructing daily plans for a Mars rover. There is a great
deal of uncertainty in this domain, concerning such things
�
QSS Group Inc.

as time, energy usage, data storage available, and position
(see [5] for a more detailed description). However, there
are some compelling reasons for keeping the plans simple:

� There is a need for cognitive simplicity – plans must
be simple enough that they can be displayed easily,
and understood and modified by both Earth scientists
and mission operations personnel.

� Plans must undergo very detailed analysis and simu-
lation using complex models of illumination, energy
consumption, thermal characteristics, kinematics, and
terrain. There is limited time to do this analysis, so
plans must be kept structurally simple in order to ex-
pedite this process.

� There is limited communication bandwidth and lim-
ited storage on board the rover, so there is an advan-
tage to keeping plans small.

As a result, we are interested in limited contingency plan-
ning. More precisely, we would like to be able to compute
the optimal � -contingency plan for a problem – that is, the
optimal plan containing � or fewer contingency branches.

In general, the problem of contingency planning is known
to be quite hard [11], and � -contingency planning is no
exception. If ���	� , � -contingency planning reduces to
finding the optimal policy. If �
��� , � -contingency plan-
ning reduces to stochastic conformant planning, where we
must find the best unconditional sequence of actions [9].
One can argue that limited contingency planning is harder
than both conformant planning and searching for the opti-
mal policy. First, the search space of conformant planing
(that is, the set of all sequences of actions) is exponentially
smaller than the search space of � -contingency planning
(the set of all � -contingency plans). Second, although the
set of all policies is usually larger than the set of all � -
contingency plans, dynamic programming (DP) techniques
are able to significantly prune the search for an optimal
policy by using Bellman’s optimality principle. However,
to our knowledge, there is no previous algorithm that is

able to implement Bellman’s optimality principle for lim-
ited contingency planning. The problem is that the classi-
cal Markov state is insufficient: knowing the best limited
contingency plan from time

�����
to the horizon for each

state we could be in at time
�����

does not help to find the
best plan from time

�
to the horizon. In fact, the action

performed at time
�

may bring us no certainty about the
state at time

�����
, and the best plan for an uncertain ini-

tial state may be different from the best plan in each state.
However, the belief-state borrowed from partially observ-
able Markov decision process (POMDP) theory [6, 10] , that
is, a probability distribution on the original state, is a suf-
ficient statistic to allow a DP approach to the problem of
limited contingency planning. This is the basic principle of
the algorithm presented in this paper.

Conformant planning is well known to be equivalent to the
problem of planning in an unobservable environment: lim-
iting oneself to unconditional plans is equivalent to dis-
carding the observation of the current state that is avail-
able at each time step. The first algorithm to exploit this
fact performed heuristic search through the belief space
[1, 4]. Instead of using Bellman’s optimality principle,
these techniques (when they tackle the optimal planning
problem) rely on admissible heuristics to prune the search
space [4]. Recently, Hyafil and Bacchus used the best so-
lution techniques for POMDPs to solve stochastic confor-
mant planning problems [9]. In this approach, conformant
planning is modelled as a fully non-observable Markov de-
cision process (NOMDP), which is a particular case of a
POMDP. As Hyafil and Bacchus point out, the drawback
of this approach is that it requires computing optimal so-
lutions for states that may be unreachable, but its strength
is that it prunes the search space by using Bellman’s op-
timality principle. For several test bed problems, Hyafil
and Bacchus show that this approach outperforms a CSP
algorithm that is able to do some reachability analysis but
cannot prune the search space. Moreover, the superiority
of the POMDP approach becomes apparent as the size of
the problems grows.

In this paper, we present optimal � -contingency planning
(OKP), an incremental algorithm for optimal limited con-
tingency planning. As in [9], we use a POMDP framework
to model the problem, which allows using Bellman’s op-
timality principle to speed up the search. The difference
is that we must encode the number of branches allowed in
the state description of the POMDP. In effect, this amounts
to keeping multiple copies of the POMDP corresponding to
different numbers of branches allowed. When we choose to
make an observation in one POMDP, we drop into a POMDP

with fewer branches allowed. When all the branches are
used up, we end up in the POMDP for the conformant plan-
ning problem as used by Hyafil and Bacchus.

We start by specifying the notion of contingent plan used
throughout the paper. In Section 2, we first show how

Hyafil and Bacchus encoded conformant planning as a
POMDP. We then move on to

�
-contingency planning, fol-

lowed by balanced � -contingency planning. In Section 3
we further generalize this to arbitrary � -contingency plan-
ning. In Section 4 we present experimental results compar-
ing OKP against a brute force search technique for finding
� -contingency plans. Finally, we review related work and
conclude.

1.1 CONTINGENT PLANS

This paper addresses a series of variants of the limited con-
tingency planning problem. In general, we are looking for
optimal tree-shaped plans, the simplest form being confor-
mant plans, which are simple sequences of actions without
branches. This choice may seem a little odd since there
are more compact types of plans or policies, such as finite
state controllers. However, there are reasons to prefer tree-
shaped plans in some application domains. For instance,
in the Mars rover domain, resources are monotonically de-
creasing along each possible trajectory, so that a state is
never visited twice. Moreover, the action the rover executes
must depend on the resource available. Therefore, NASA

requires that plans have finite horizon and do not contain
loops.

Optimal � -contingency planning is the problem of finding
an optimal tree-shaped plan with (at most) � branch points.
We consider three variants of this problem:

general � -contingency planning: in the most general
case, we are looking for the best plan with at most
� branch points overall;

linear � -contingency planning: we try to find the best
plan with at most � branch points, all of them on one
trajectory through the plan. That is, the plan structure
is a main line of actions with simple branches attached
to it, and no branches on the branches.

balanced � -contingency planning: we are looking for
the best plan with at most � branch points in each pos-
sible trajectory through the plan. That is, the largest
possible plan structure is a balanced tree with � branch
points in each path from the root (initial time) to a leaf
(planning horizon). So, there are actually more than �
branch points over the whole plan.

Although the balanced plan structure is a bit contrived, it
is useful for presenting our algorithm since OKP takes its
simplest form in this case.

2 OPTIMAL BALANCED
	
-CONTINGENCY PLANNING

Our formalism uses several POMDPs defined over different
state, action and observation spaces, so it is important to

understand the role of each POMDP. The first POMDP we
introduce,

�
, represents the planning problem in the clas-

sical sense. In this paper, our goal is to find optimal contin-
gent plans for the process

�
.
�

can be a fully observable
MDP, which we see as a particular case of a POMDP. In
our framework, it means that we can observe exactly the
current state each time we decide to branch. In the general
case (when

�
is not an MDP), we have only noisy observa-

tions for branching decisions. Later, we introduce several
other POMDPs, � ����� ��� �	� , obtained by transforming
the original process

�
in such a way that an optimal so-

lution to
���

is an optimal � -contingency plan for
�

. So,
each

� �
represents the problem of � -contingency planning

in
�

.

The planning problem for which we want to find opti-
mal contingent plans is modelled as the POMDP

� �
�������������������
, where

�
,
�

and
�

are the (finite) set
of states, actions and observations (respectively);

�
is the

transition probability:
��
 �!�"#��%$&�

is the probability of mov-
ing to state

�'$
if we execute action

"
in state

�
;

�
is the

reward function:
�(
��)�"*�

is the (expected) reward for exe-
cuting action

"
in state

�
; and

�
is the observation prob-

ability:
�(
�"+�� $ �,-�

is the probability of observing
,/.0�

when an execution of action
"

leads to state
�1$

. In this sec-
tion, we assume that the observation probabilities of

�
do

not depend on the last action executed, and we denote by�(
��'$ �,-�
the (well defined) probability of observing

,2.3�
when arriving in

�'$4.5�
. We relax this assumption in Sec-

tion 3.3. If
�

is a fully-observable MDP, then
� � �

and�(
��'$ ��'$6� � � for all
�'$7.8�

.

The problem we tackle is this section is the following:
given

�
, 9 , and a probability distribution over the initial

state :+;
��%�
(the initial belief), find the best contingent plan

where there are (at most) � branch points in each possible
trajectory through the plan. The optimality criterion used
is the classical expected cumulative reward (discounted or
not) up to the planning horizon 9 :<0=?>@ ACBEDGF AIH
 � ��J : ;LK H
 � �

is the reward received at time
�

and
F .NM � �LO is the

discount factor.

First, we assume that we must create one branch for each
observation that can be made at each branch point (so, the
branch points are

J �PJ
-ary in a POMDP, and

J ��J
-ary in an

MDP). We show how to relax this constraint in Section 3.2.

2.1 CONFORMANT PLANNING

When � � � , the problem is that of conformant planning:
we must find the best unconditional sequence of 9 ac-
tions. As Hyafil and Bacchus [9], we model the stochas-
tic conformant planning problem as a completely non ob-
servable MDP (NOMDP)

� ; �
�� ; �� ; �� ; �� ; �� ; �� ; �

where
� ; � �

;
� ; � �

;
� ; contains only one ele-

ment,
,-Q

, that basically says “I can’t see anything infor-
mative”;

� ;
��)�"#��'$6� � ��
��)�"#��R$&�
,
� ;
 �!�"S� � �(
��)�"*�

,
and

� ;
T"#��'$��,1Q%� � � for all

��)�"+��'$&�U.V��WX�YWX�

.

As for any POMDP [10], the optimal solution of
� ; over

the finite horizon 9 can be determined in finite time using
value iteration (VI), which is a form of dynamic program-
ming (DP). Starting from the planning horizon 9 , we pro-
ceed backward through time to construct a value functionZ ;A for each

� . � �\[� [R]L]R]^95� . The value
Z ;A
 : �

represents
the expected reward we get by executing an optimal confor-
mant plan for the starting belief : over the planning horizon
�
. In the particular case of the NOMDP

� ; , the equations
of VI are the following (the superscript 0 of the

Z
and _

functions is a reference to � , the number of branch points
in the plan): Z ;>
 : � � �

(1)

and, for all
� . � � �]R]L]^9a` � � :Z ;A
 : � �cbPd1ef%g!hYi _ ;A
 : �"S�kjl

(2)

_ ;A
 : �"S� �nm @o�g)p :
��%�^�(
��)�"*�^q � F Z ;ACrED
Ts ft�u
 : ���] (3)s ft�u
 : �
represents the belief posterior to action

"
and ob-

servation
,-Q

, given the prior belief : . It is given by Bayes’
rule: s ft u
 : �v
�� $ � �xw o�g)p :
 �'�^��
��)�"+��'$&�y] (4)

Since we do not make any observation at all, whether the
original process

�
is a POMDP or an MDP does not influ-

ence in any way the optimal solution of conformant plan-
ning. Note that the observation set

�
and the observation

function
�

are not used anywhere in the equations above.

Practical implementations of VI exploit the fact that the
value function is always a piecewise linear convex func-
tion of the belief : . The functions

Z ;A
^z{�
and _ ;A
^z&�"S�

are
represented as finite sets of | -vectors, each of them corre-
sponding to a linear function of : .

Z ;A and _ ;A are then de-
fined as the supremum (max) of the set of linear functions
that represent them. All operations in equations (2) and (3)
reduce to manipulation and production of | -vectors. The
sets of | -vectors are regularly purged of vectors represent-
ing linear functions that are optimal nowhere in the belief
space. Many algorithms differ only in the way they purge
sets of | -vectors. Although the belief space is continuous,
all the computation is finite [10, 6].

The value function constructed when solving
� ; up to the

planning horizon 9 contains the expected reward of the
best conformant plan in each possible initial belief state,
and for each planning horizon less than or equal to 9 . To
get the optimal plan for a particular starting belief : ; (for
instance, the certainty of being in a given state) and horizon

9 , we must simulate a trajectory by always executing the
optimal action for the current belief state, which requires
monitoring the belief state along the trajectory using equa-
tion (4). Since there is only one possible observation at
each step, there is always only one possible belief at the
next step. So, the trajectory can never branch.1 We could
as easily extract the optimal conformant plan for another
starting belief and/or another planning horizon

��� 9 . All
the information that is important and hard to calculate is in
the value function, which is computed only once. In OKP,
we do not need to extract any plan before having reached
the level � where we decide to stop.

2.2 1-CONTINGENCY PLANNING

Similarly, the optimal 1-contingency plan is the optimal so-
lution of a POMDP

� D
�
�� D �� D �� D �� D �� D �� D �

.
� D

is
constructed by duplicating

� ; and adding an observe-and-
branch action between the two copies of

� ; . Thus, each
state

�(.3�
of the original POMDP

�
is represented twice

in
� D

. One copy represents being in
�

before the plan has
branched, and the other represents being in

�
after the plan

has branched. The observe-and-branch action induces an
irreversible transition from states of the first type to states
of the second type. As for � � � , the problem is completely
non-observable, except that the observe-and-branch action
allows making an ordinary observation as specified in the
original POMDP

�
, and conditioning the next actions on

this observation. If
�

is an MDP, then the observe-and-
branch action sees the current state exactly. Formally:

States:
� D
� ��W � � � � . The pair

 �) � � , ��. �
and

� . � � � � , represents being in
�

and having possibility of
using the observe-and-branch action � times in the future.
Each

 �) � � may be seen as an element of
� ; , the state space

of the conformant planning NOMDP
� ; .

Belief states: The number of branch points that are still
available for the future, � , is always known with certainty.
All the uncertainty on the state

 �) � � of
� D

comes from
the uncertainty on

�
. Therefore, a belief state for

� D
is a

pair

 : � � where : is a probability distribution over

�
and

� . � � � � .

Actions:
� D
� ��� � " t�� � , where

" t��
is the observe-and-

branch action.
" t��

is executable only in states

 �! � �

,
� .�

.
" t��

is a special instantaneous action: executing it does
not increment time. As shown below, it can be used only

1It is also possible to simulate trajectories by following point-
ers from � -vectors at time 	 to � -vectors at time 	�
� established
when solving ��� , instead of maintaining the current belief. How-
ever, this technique appeared to be much slower in the context of
OKP with ����� , because it does not allow not building a branch
for observations that are impossible given the current belief dur-
ing plan extraction.

once in each trajectory. The other actions
"2.8�

are called
ordinary actions.

Observations: Formally,
� D
� �

. However, useful
observations can be made only through the observe-and-
branch action

" t��
. All other actions provide a non informa-

tive observation. To model this, we select arbitrarily one
observation of the original process, we rename it

,!Q
, and

we use it to represent the non-informative observation pro-
duced by all actions different from

" t��
. Observed after an

ordinary action
"8.5�

,
,-Q

means “I can’t see anything in-
teresting”, and when it is observed after

" t��
, it has the same

semantics as in the original process
�

.

Effects of ordinary actions: The states

��) � � , � . �

,
represent an absorbing subset, that is, we cannot get out
of this subset once we enter it (remember that only or-
dinary actions are possible in such states). All the tran-
sition probabilities, rewards and observation probabilities
involving only such states are defined as in

� ; . The
only way to get out from states of type

 �) � �
,

� . �
,

is through the observe-and-branch action. The transi-
tion probabilities, reward and observations involving only
states of the type

 �! � �
,

�x. �
, and not the observe-

and-branch action
" t��

, are also defined exactly as the
transitions, rewards, and observations in

� ; . That is:� D
�
��) � � �"#'
��'$ � ��� � ��
��)�"#��R$&�
,
� D
�
��) � �v�"#R
 �'$� � ��� ��(
��)�"#��R$6�

, and
� D
�"#R
��'$ � � �,1Q%� � � , for all

��) � �"#��'$6�?.��W � �	[� � W �YW8�
.

Effect of the observe-and-branch action: executing ac-
tion

" t��
in state

��) � �
leads with certainty to state

��) � � ,
with the same number of time-steps to go. This action pro-
vides no reward and produces an observation following the
observation probability of the original POMDP. Formally:� D
�
��) � � �" t�� R
��) � ��� � � , � D
�
 �! � �v�" t�� R
 �) � ��� � � , and� D
T" t�� R
 �) � �v�,-� � �(
��)�,-�

, for all

 �!�,-�?.8� W8�

.

The fact that the observe-and-branch action is instanta-
neous might make the solution of

� D
with VI look a little

bit complicated a priori. However, it turns out that opti-
mization over a finite horizon is straightforward. First, for
all : and all

��� 9 , the value of belief state

 : � � at time

�

in
� D

is equal to
Z ;A
 : �

in
� ; . In other words, the result

of the computation at level 0 (equations (1) through (3))
can be reused as is, it gives the value of each belief state
 : � � of

� D
at all

� . � � �]R]L]^95� . Then, if we denote byZ DA
 : �
the value at time

�
of belief

 : � �
in

� D
, then VI is

summarized by the following equations:Z D>
 : � � �
(5)

and, for all
� . � � �]R]L]^9a` � � :Z DA
 : � � bPd1e � _ DA
 : �" t�� �v bPd1ef%g!hYi _ DA
 : �"S� j��

(6)

with_ DA
 : �"*� � m @o�g)p :
��%�^�(
��)�"*� q � F Z DACrED
Ts ft u
 : ���
(7)

for all
" .8�

(using equation (4) to calculate
s ft u
 : �

), and_ DA
 : �" t�� � � @t g � _ DA
 : �" t�� �,-�
(8)

_ DA
 : �" t�� �,-� � @o�g)p :
��%���(
 �!�,-� Z ;A
Cs f����t
 : ���
(9)

where
s f����t
 : �

is the posterior belief after observing
,
,

given by Bayes’rule:s f����t
 : �L
�� $ � � :
��'$ ���(
 �R$ �,-�y] (10)

Note that if the original problem is an MDP, then equations
(8) through (9) simplify as:_ DA
 : �" t�� � � @o�g)p :
��%� Z ;A
 : o �

(11)

where belief : o gives state
�

with probability 1.

So, a practical solution of
� D

requires (i) having solved� ; in advance; and (ii) one (backward) pass of VI through
states

 �! � �
,
��.X�

, following equations (5) to (11). During
the calculation of

Z D
, we read | -vectors in the solution of� ; to evaluate the observe-and-branch actions. Once the

value function
Z D

is calculated, we can extract the optimal
1-contingency plan for a given initial belief :G; by simulat-
ing a trajectory in

� D
. As long as the observe-and-branch

action is not used, the trajectory may never branch. If at
some point the _ -values _ DA

indicate that
" t��

is the opti-
mal action for the current belief state, then a branch point
is added to the plan. We must then calculate the poste-
rior belief for each observation

, . �
using equation (10)

(that is, for each state
�/. �

if
�

is an MDP). Finally,
the optimal branch for each

,
is constructed by simulat-

ing a (non-branching) trajectory in
� ; . Because

" t��
is

not present in
� ; , no more branch points can be added.

Note that it may happen that the observe-and-branch action
is never used during the travel through

� D
. It shows that

there exists a conformant plan that is at least as good as
the best 1-contingency plan, so there is no need to use an
observe-and branch action. Note also that, one more time,
the optimal solution of

� D
contains the value of the best

� -contingency plan for all � . � � � � , all possible initial
beliefs : ; , and all planning horizons less than or equal to9 .

2.3 BALANCED � -CONTINGENCY PLANNING

In general, the � -contingency planning problem (� � �
)

may be modelled as a POMDP
���

built on
����� D

by adding

a copy of
� ; connected to the

 �V` � �	��
 level of
�0��� D

by the observe-and-branch action. All the equations of the
previous section can be re-used by replacing superscript 1
by � and superscript 0 by � ` � . That is:Z �>
 : � � �

(12)Z �A
 : � � bPd1e � _ �A
 : �" t�� �v bPd1ef'g!h i _ �A
 : �"S� j �
(13)

_ �A
 : �"S� � m @o�g)p :
��%�^�(
��)�"*� q � F Z �ACrED
Cs ft�u
 : ���
(14)_ �A
 : �" t�� � � @t g � _ �A
 : �" t�� �,-�
(15)_ �A
 : �" t�� �,-� � @o�g)p :
��%���(
��)�,-� Z ��� DA
Cs f����t
 : ���] (16)

If the solution of
�0��� D

is known, then the solution of
���

requires only one pass of VI through states at level � (that
is, states

��) � � , ��.V�
), reading | -vectors in

Z ��� DA
to eval-

uate the observe-and-branch action. Once the value func-
tions

Z �A
are determined, we can easily extract the best (bal-

anced) � -contingency plan for a given initial belief by sim-
ulating a trajectory in

���
. When the observe-and-branch

action is used, the trajectory branches and one branch for
each possible observation

,2.5�
must be built by simulat-

ing a trajectory in
����� D

. This is why the algorithm pro-
duces balanced contingency plans: at each branch point
at level � � , each exiting branch (which is in fact a
tree) may contain up to *` � branch points (equation (16)).
Therefore, each trajectory through the plan tree may tra-
verse up to � branch points. As previously, the algorithm
does not have to use all the branch points allowed if there is
no utility to be gained by doing so. Therefore, the version
of OKP presented in this section produces an optimal plan
with at most � branch points in each trajectory.2

3 EXTENSIONS

OKP may easily be adapted to other variants of the limited
contingency planning problem.

3.1 TYPES OF PLANS

First, the algorithm can search for other types of plans.
For instance, we can search for the optimal linear � -
contingency plan as defined in Section 1.1, that is, the
best plan with (at most) � branch points, all of them on

2Note that the plan extraction phase of this version of OKP is
exponential in � . This is an artifact due to the particular variant of
the problem addressed. What we call a “balanced � -contingency”
plan contains in fact a number of branch points exponential in � .
Therefore, extracting such a plan from the solution of the POMDP
is exponential in � . This is not the case for the other variants of
the algorithm presented in Section 3.1.

one trajectory through the plan. In this case, each level
 . � � �]L]L] �G� of

���
contains

J ��J
observe-and-branch

actions, � " t��t �,5. � � . The semantics of
" t��t is “observe,

branch, and use the 4` � remaining branch points in the
branch associated with observation

,
”. Equation (13) be-

comesZ �A
 : � � bPd-e � b(d-etvg � i _ �A
 : �" t��t �Ij4 bPd1ef'g!hYi _ �A
 : �"S�kj �
where_ �A
 : �" t��t � � _ ��� DA
 : �" t��t �,-� � @t � g ����� t�� _ ;A
 : �" t��t �, $ �]
Similarly, we can tackle the general � -contingency plan-
ning problem (at most � branches over the whole plan with-
out any other constraint), by adding multiple observe-and-
branch actions at each level of

� �
. Here we must model

one observe-and-branch action for each possible way to
distribute the �(` � remaining branch points in the

J ��J
ex-

iting branches. Therefore, the number of different observe-
and-branch actions required at level � is
�J ��J � ��` � ���
�J ��J ` � ���&
 ��` � ���]
So this variant of OKP is somewhat impractical for large
� . As shown below, a way to limit the complexity of the
algorithm is to change the branch conditions.

3.2 BRANCH CONDITIONS

The algorithm of Section 2 creates one particular branch
for each observation

, .8�
that can possibly be made after

the observe-and-branch action (although it considers only
the observations that are possible given the current belief
during plan extraction). In other words, there may be up toJ ��J

branches stemming from each branch point of the plan.
In some variants of the limited contingency planning prob-
lem, we may want to limit the number of branches exiting
from each branch point by grouping several observations
together.

OKP can be adapted to any kind of branch condition. For
instance, if we want the plan to use binary branch points,
then we must create one observe-and-branch action

" t��� � for
each possible way to partition the observation set

�
into

two non-empty subsets
��$

and
�
	��?$

. Equation (13) be-
comesZ �A
 : � � b(d-e � bPd1e� � i _ �A
 : �" t����� � j bPd1ef%g!hYi _ �A
 : �"S� j �

_ �A
 : �" t��� � � � _ �A
 : �" t��� � �� $ � � _ �A
 : �" t��� � ���	?� $ �
where_ �A
 : �" t��� � �� $ � ����

�� $ J : � Z ��� DA
Cs f����� �� �
 : ���/

��

�� $ J : � � @o�g)p :
��%� @tvg � � �(
��)�,-�/

s f � �� �� �
 : �L
�� $ � � :
�� $ � w tvg � � �(
�� $ �,-�y
and similarly for _ �A
 : �" t����� ���	��?$6�

. Note that there are��� � � ` �
such actions (subsets

� $
), which is a considerable

number in most cases.

The equations above correspond to balanced � -contingency
planning. If we are looking for other types of plans, then
we must create a different observe-and-branch action for
each possible branch condition and each possible way of
distributing the remaining branch points in the stemming
branches. However, the number of ways of distributing
branch points is greatly reduced (compared to the formulas
of Section 3.1) when we use compact branch conditions.
For instance, if we look for the optimal plan with at most
� binary branch points overall, then there are

��� � � ` �
dif-

ferent branch conditions, but only � ways to distribute the
��` � remaining branch points in the two exiting branches.
Therefore, the total number of observe-and-branch actions
at level � is

 ��� � � ` � � � .
The computational price of compact branch conditions can
be greatly reduced in the particular case where the obser-
vation

,
represents a numerical value.3 In this case, we

can focus the search on a particular kind of branch condi-
tion based on threshold. Each branch point is defined by
a threshold

,�� .��
. There are two exiting branches: one

corresponds to observing a value
, .5�

less than or equal
to

,��
, and the other corresponds to values greater than,��

. Thus, the total number of different branch conditions
is

J ��J ` � . As there are only two exiting branches, there
are only � ways to distribute the remaining branch points.
Therefore, the total number of observe-and-branch actions
at level � of the strict � -contingency planning POMDP is
only

�J ��J ` � � � .
3.3 GENERAL POMDPS

Finally we can relax the hypothesis on the observation
probabilities of the original POMDP

�
. In Section 2, we as-

sumed that the observation probabilities depend only on the
arrival state

� $
(that is,

�(
�� $ �,-���
, while the general formal-

ism of POMDPs assumes that they also depend on the last
action (

�(
�"#��'$��,-�
), which allows a richer model of sensory

actions. The problem is that, when we move to this more
general framework, the observation probabilities of

" t��
in�0�

, previously defined as
� �
�" t�� R
 �! � ` � �v�,-� � �(
��)�,-�

,
are not well defined anymore. The observation following
the use of the observe-and-branch action depends on the
action performed at the previous time step, which violates
the (first order) Markov property.

3Actually, it is not necessary that the observation is a numeri-
cal variable. It is sufficient that there be a complete order defined
over it.

One way to deal with this situation is to introduce the last
action executed into the Markov state of

�N�
. Another,

equivalent, way to model this is as follows: instead of
adding

� � observe-and-branch actions to the preexistingJ � J
actions at each level � (where

� � is the total number of
branch conditions and ways of distributing � ` � remain-
ing branch points in the exiting branches), we create

� �
(new) copies of each action

"2.X�
. Each copy corresponds

to executing
"
, and then branching the plan following the

protocol of a particular observe-and-branch action. For in-
stance, in the case of balanced � -contingency planning withJ ��J

-ary branch points (as in Section 2), we duplicate each
action

"2.X�
and call �

"
its copy (�

�
is the set of all copies).

�
"

represents executing
"

, not discarding the resulting ob-
servation, and branching the plan based on this observation
following the protocol of action

" t��
of Section 2. The equa-

tions of VI become:Z �A
 : � � bPd1e � bPd1ef'g!h i _ �A
 : �"S� j b(d-e�f'g �h i _ �A
 :
�
"S� j �

_ �A
 :
�
"	� � @t g � _ �A
 :

�
"G�,-�

_ �A
 :
�
"#�,-� �@o�g)p :
 �%���(
��)�,-���k�(
��)�"S� � F Z ��� DACrED
Cs �ft
 : �����

s �ft
 : �L
�� $ � � :
��'$ ���(
T"#��R$I�,-�y]
Note that we are not concerned with this issue if the original
process

�
is a fully observable MDP.

4 EXPERIMENTS

We implemented OKP using Cassandra’s POMDP solver
available on the Internet.4 We used the witness algorithm
[10] to solve OKP’s multiple level POMDP. The results
presented in this paper concern the variant of OKP that
searches for balanced contingent plans (Section 3.1), build-
ing a branch for each possible observation (Section 3.2).
We focus on two simple test bed problems.

As Hyafil and Bacchus stressed for the particular case
��� � , OKP for general � is able to prune the plan space
(using Bellman’s optimality principle), but it computes (the
value of) the optimal plan in every belief state at every hori-
zon, while we may be interested only in a single initial be-
lief and the belief states reachable from it. To measure the
value of this trade-off, we implemented in the same envi-
ronment as OKP, an algorithm that systematically searches
and evaluates all possible contingent plans for a given � ,
horizon, and initial belief, taking into account only reach-
able belief states. Its performance gives an indication of the

4http://www.cs.brown.edu/research/ai/pomdp/

size of the search space, and how OKP is able to prune the
search using Bellman’s optimality principle.

The first problem we used is a variant of the tiger problem
[10]. In this problem, the agent is standing in front of two
doors (left and right). Behind one door lies a dangerous
tiger, and there is a reward behind the other door. There-
fore, there are two different world states: tiger–left and
tiger–right. The initial position of the tiger is unknown,
and the initial probability on the tiger position is uniform
over the two doors. The agent has three possible actions:
opening one of the doors (open–left and open–right), or lis-
tening to try to guess where the tiger is (listen). The listen
action does not change the state of the world, it costs 1 unit
of utility, and provides a noisy observation that can take
two possible values: hear–tiger–left and hear–tiger–right.
If the state of the world is tiger–left, then the probability of
observing hear–tiger–left is 0.85 and the probability of ob-
serving hear–tiger–right is 0.15. Similarly, the probability
of hearing the tiger to the right when the tiger is actually to
the right is 0.85. Opening the door behind which the tiger
lies provides a “reward” of -10. Opening the other door
brings a reward of +6. After opening a door, the problem is
reset in its original state (that is, the agent is brought back in
front of the doors and the new position of the tiger is drawn
at random uniformly). Given these parameters, the optimal
conformant plan over a horizon of 9 time-steps is to listen9 times. At each step, it provides the reward ` � with cer-
tainty, while opening an arbitrary door (we are not allowed
to condition the choice of the door on the result of previous
listen actions) brings the expected reward: 0.5 (-10) + 0.5
(6) = -2. The discount factor is set to 1 (no discount).

We ran OKP and plan enumeration on the tiger problem
for different planning horizons 9 and levels � . Fig. 1
shows the optimal contingent plans obtained with a sam-
ple of small values for 9 and � . Fig. 2 shows the evolution
of the value of the optimal contingent plan as a function
of � and 9 . Finally, Fig. 3 shows the evolution of the to-
tal time taken by the algorithm as a function of � and 9 .
These results clearly show the exponential blow-up of the
search space and how OKP is able to resist it by efficiently
pruning the search. In this example, Bellman’s optimality
principle allows a drastic reduction in the complexity of the
search that largely compensates for the fact that we have to
deal with (belief) states that are unreachable.

The second problem is a small maze world due to
Horstmann and Zilberstein [8] and represented in Fig. 4.
In this problem, the agent starts from the location marked
with an S and must end-up in the goal location G. The agent
can use 4 actions, N, S, E and W, that allow it to move 1 or
2 positions in the desired direction with equal probability
(unless a wall blocks the way). The goal state is absorbing.
The observation available (when we decide to branch) is
the presence or absence of a wall on each side of the square
that defines the agent’s location. Thus, there are 8 different

 = 2:H = 1, k

hear−tiger−left

hear−tiger−right

open−left

listen

open−right
(value = 2.6, user time = 0.0s)

 user time = 0.0s)
(value = 1.6,

open−left

open−right

listen

listen

listen

hear−tiger−right

hear−tiger−left

 = 1, k H = 3:

 user time = 0.1s)
(value = 1.855,

listen

listen

open−left

open−right

hear−tiger−right

hear−tiger−left

hear−tiger−left

hear−tiger−right

hear−tiger−right

hear−tiger−left
listen

listen

listen

k = 2, H = 3:

(value = 5.2, user time = 0.1s)

hear−tiger−left
open−left

open−right
hear−tiger−right

open−left

open−right

hear−tiger−left

hear−tiger−right

listen

listen
open−right

listen

open−left

 = 4:H = 2, k

hear−tiger−left

hear−tiger−right

Figure 1: Optimal contingent plans for the tiger problem.

possible observations (and 11 states). The agent gets a zero
reward at every step except when it enters the goal state.
Therefore, there is no time pressure on the agent: it does
not get a bigger reward for getting to the goal earlier, and it
must simply maximize its probability of reaching the goal
inside of the planning horizon. Fig. 4 contains an example
of an optimal contingent plan for this problem. Fig. 5 and
6 show the evolution of the value of the optimal plan and of
the execution time of the two algorithms on this problem.
As for the previous example, the trade-off adopted by OKP

is highly valuable.

Finally, we experimented on the GRID-10X10 problem de-
signed by Hayfil and Bacchus [9] to show the limits of the
POMDP approach to conformant planning. This problem
is constituted of an empty 10X10 square room. The goal
state is a corner of the room and the start state state is a
fixed location in the middle of the room. The four actions
available, N, S, E, and W, allow the agent to move of one
position in the grid, but there is noise in the direction of
this move. The actions N and S move the agent in the des-
ignated direction with probability 0.9, and to the West and
East directions with probability 0.05 each. Similarly, the
E and W action succeed with probability 0.8 and move the

-15

-10

-5

0

5

10

15

2 4 6 8 10 12

B
es

t p
la

n
va

lu
e

Planning horizon

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5

Figure 2: Value of the optimal contingent plans of the tiger
problem.

0.1

1

10

100

0 5 10 15 20 25 30 35 40 45 50

U
se

r
tim

e
(s

)

Planning horizon

OKP, k = 0
OKP, k = 1
OKP, k = 5

OKP, k = 10
plan enum, k = 0
plan enum, k = 1
plan enum, k = 2

plan enum, k = 10

Figure 3: Execution time of OKP and plan enumeration in
the tiger problem.

agent to the North and South with probability 0.1. As in
Horstmann and Zilberstein’s maze, the agent can perceive
only nearby walls. The algorithms execution time for this
problem is presented in Figure 7. These results are consis-
tent with Hyafil and Bacchus’s. They show that the plan
enumeration technique is faster than OKP in this particu-
lar problem. This may be explained by observing that, for
small values of the planning horizon, there are much less
reachable states than the total number of states. Therefore,
the reachability analysis of the plan enumeration algorithm
allows saving more time than Bellman’s optimality princi-
ple buys us in OKP. It suggest that the best algorithms will
be obtained by combining reachability analysis and Bell-
man’s optimality principle.

5 RELATED WORK

A number of probabilistic contingency planning systems
have been developed that can deal with partial observabil-

S

G

S, E, S

N, E, S, E ,S, S

E, N, W, S, S, S

E, S, E, S, W, S

S, S, S, S ,S, S

Figure 4: Horstmann and Zilberstein’s maze problem and
the optimal contingent plan for � � � and 9 � � .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

B
es

t p
la

n
va

lu
e

Planning horizon

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5

k = 10

Figure 5: Value of the optimal contingent plans in
Horstmann and Zilberstein’s maze.

ity, including C-Buridan [7], DTPOP [14], Mahinur [13],
P-Graphplan [3], C-MAXPLAN [12], ZANDER [12], and
heuristic search through the belief space [4, 2]. Since the
limited contingency planning problem may be modelled as
a POMDP, all of them can potentially be applied to this
problem. In a sense, the contribution of this paper is to
show how to cast the limited contingency planning prob-
lem as a problem of planning with partial observability. Not
all of these systems attempt to maximize the expected re-
ward. For instance, the objective for many of them is to
find a plan with a success probability exceeding a given
threshold. They can potentially be used to find a limited
contingency plan that succeeds with a minimum probabil-
ity. Also, by raising the probability threshold, one could
in theory force any of these systems to continue searching
for an optimal plan or policy. We believe that it should be
relatively easy to do this for the partial-order planners C-
Buridan [7], DTPOP [14], and Mahinur [13]. For these sys-
tems, all that would be required is to incorporate a counter
into the planning algorithm so that no more than � branches
could be added to the plan. For C-MAXPLAN [12] and ZAN-
DER [12] one could write exclusion axioms that prohibit
more than � observation axioms from appearing in the plan.
However, if there are � possible observations,

���� r D
�

exclu-
sion axioms would be required. Finally, heuristic search
through the belief space [4, 2] can be applied directly to the
POMDP

�0�
of � -contingency planning. It amounts to in-

0.1

1

10

100

0 5 10 15 20 25 30 35 40 45 50

U
se

r
tim

e
(s

)

Planning horizon

OKP, k = 0
OKP, k = 1
OKP, k = 2

OKP, k = 10
plan enum, k = 0
plan enum, k = 1
plan enum, k = 2

plan enum, k = 10

Figure 6: Execution time of OKP and plan enumeration in
Horstmann and Zilberstein’s maze.

1

10

100

1000

0 2 4 6 8 10 12

U
se

r
tim

e
(s

)

Planning horizon

OKP, k = 0
OKP, k = 1
OKP, k = 2

plan enum, k = 0
plan enum, k = 1
plan enum, k = 2

Figure 7: Execution time of OKP and plan enumeration in
the GRID-10X10 problem.

troducing the number of branch points remaining as a fully
observable component of the state.

6 CONCLUSIONS

We presented OKP, a new algorithm that is able to find opti-
mal solutions to a variety of � -contingency planning prob-
lems. The basic principle of OKP is to recognize that the
belief state borrowed from POMDPs contains all the infor-
mation necessary to allow a DP solution to limited contin-
gency planning. We have shown experimentally that the
time gained by pruning the plan space using Bellman’s op-
timality principle may largely compensates for the fact that
we have to deal with (belief) states that are unreachable,
but that this trade-off is not be beneficial in all cases. This
work, as well as some recent work on conformant plan-
ning, shows that Bellman’s optimality principle is a pow-
erful tool for many optimal planning problems (where we
have to find the best plan over a set plans), not just search-

ing for the optimal policy. By showing how to cast the lim-
ited contingency planning problem as a problem of plan-
ning with partial observability, this work allows the appli-
cation of many previous algorithms to limited contingency
planning.

Acknowledgments

We thank Richard Dearden and Sailesh Ramakrishnan for
comments on the material, and Rich Washington for helpful
feedback on the paper. This work was supported by the
NASA Intelligent Systems Program.

References

[1] P. Bertoli, A. Cimatti, and M. Roveri. Heuristic search
+ symbolic model checking = efficient conformant
planning. In Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence,
2001.

[2] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso.
Planning in mondeterministic domains under partial
observability via symbolic model checking. In Pro-
ceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence, 2001.

[3] A. Blum and J. Langford. Probabilistic planning in
the Graphplan framework. In Proceedings of the Fifth
European Conference on Planning, 1999.

[4] B. Bonet and H. Geffner. Planning with incomplete
information as heuristic search in belief space. In Pro-
ceedings of the Fifth International Conference on Ar-
tificial Intelligence Planning and Scheduling, pages
52–61, 2000.

[5] J. Bresina, R. Dearden, N. Meuleau, S. Ramakrish-
nan, D. Smith, and R. Washington. Planning un-
der continuous time and resource uncertainty: A
challenge for AI. In Proceedings of the Eighteenth
Conference on Uncertainty in Artificial Intelligence,
2002.

[6] A.R. Cassandra, M.L. Littman, and N.L. Zhang. In-
cremental Pruning: A simple, fast, exact method
for partially observable Markov decision processes.
In Proceedings of the Thirteenth Conference on Un-
certainty in Artificial Intelligence, pages 54–61, San
Francisco, CA, 1997. Morgan Kaufmann.

[7] D. Draper, S. Hanks, and D. Weld. Probabilistic plan-
ning with information gathering and contingent exe-
cution. In Proceedings of the Second International
Conference on Artificial Intelligence Planning and
Scheduling, pages 31–36, 1994.

[8] M. Horstmann and S. Zilberstein. Automated genera-
tion of understandable contingency plans. In ICAPS-
03: Proceedings of the Workshop on Planning under
Uncertainty and Incomplete Information, 2003.

[9] N. Hyafil and F. Bacchus. Conformant probabilistic
planning via CSPs. In Proceedings of the Thirteenth
International Conference on Automated Planning and
Scheduling, 2003. To appear.

[10] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101:99–134, 1998.

[11] M. Littman, J. Goldsmith, and M. Mundhenk. The
computational complexity of probabilistic planning.
Journal of AI Research, 9:1–36, 1998.

[12] S. Majercik and M. Littman. Contingent planning un-
der uncertainty via stochastic satisfiability. In Pro-
ceedings of the Sixteenth National Conference on Ar-
tificial Intelligence, 1999.

[13] N. Onder and M. Pollack. Conditional, probabilistic
planning: A unifying algorithm and effective search
control mechanisms. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence, pages
577–584, 1999.

[14] M. Peot. Decision-Theoretic Planning. PhD the-
sis, Dept. of Engineering-Economic Systems, Stan-
ford University, 1998.

[15] M.L. Puterman. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley, New
York, NY, 1994.

